
Chapter 8 

Annuities, Amortizations and Funding 
in the Case of Term Structures 

8.1. Capital value of annuities in the case of term structures       

In Chapter 5 the annuity evaluation, defined as a financial operation for which 
the amounts do not show any sign inversion, has been made in the case of a flat 
structure. Only in Chapter 6, regarding annuities formed by loan amortization 
installments and the management of bond loans, did we consider briefly the case of 
varying rates. 

It is appropriate here to extend the scenario, assuming that such supplies are 
made in a perfect market, featured by a given term rate structure and then spot prices 
for goods with delayed delivery, obtained applying discount factors to the forward 
values of such goods. In a wider context than that of the security market and with 
the symbols introduced in Chapter 7, if v(y,z) defined in (7.5) is used as a discount 
factor to apply to the value Sz an asset with purchase in y and delivery at time z>y to 
have the spot price Py,z , then 

 Py,z   =   v(y,z) Sz (8.1) 

while for a transaction at time x<y<z, fixing the value defined in (7.16), the forward 
price Px;y,z in y of an asset of value Sz  at delivery z is given by 

 Px;y,z   =   s(x:y,z) Sz (8.1') 
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If the market is perfect (then the property of independence from the transaction 
time holds true, given by (7.19)), we have x: s(x;y,z) = v(y,z),  where  Px;y,z  =  
Py,z. However, the market coherence property, defined in Chapter 7, is enough for 
the developments of this chapter.  

Let us consider a complex operation O whose amounts have the same sign and 
are payable according to a tickler with n dates in a given interval; we have seen 
already that it is not reductive to assume this tickler is equally spaced1.  The rates are 
per period in the case of a given term structure. For simplicity we will refer mainly 
to annual rate structures and to annual periods, unless otherwise stated, for which 
what has been said in section 7.5.2 holds. 

Then O has a tickler on a time horizon of n years, that can be written: 
(T,T+1,....,T+n); let us indicate the corresponding amounts with R0, R1,...,Rn, 
assuming them to be all negative and at least one positive. It is known that this 
operation O is called annuity, temporary for n years2 (Rh are the installments of the 
annuity) and it can never be fair. In an annuity with delayed payments it is with 
certainty R0 = 0; if the payments are advance, it definitely is Rn = 0. 

Generalizing the formulation seen in Chapter 5, where we assumed a flat rate 
structure, we can here evaluate the annuity O at any time on the basis of a discrete 
term according to what was specified in section 7.5.1. It is clear that the results that 
will be obtained in this chapter – where we generalize those obtained in Chapters 5 
and 6 considering annuities, amortizations of shared and unshared loans and 
funding, evaluated on the basis of varying rates according to term structures – are 
meaningful only if we can assume that the rate structure, introduced at the starting 
time, remains valid for the whole time horizon of the considered operation. On the 
contrary a periodic adjustment of the structure is necessary to evaluate the pro-
reserves. 

It is convenient here to reinterpret the spot and forward prices defined in 
Chapter 7 also in terms of discount factors for the evaluation. In addition, recalling 
an observation introduced in section 7.5.3, it is convenient, also with discrete 
ticklers, to obtain the term structure following from a function (integrable) of 
instantaneous intensity (x,y). We suppose that this intensity on the considered time 
horizon (assuming the reflexivity and symmetry, with the meaning specified in 
Chapter 2, and in particular cases also the strong decomposability) holds. 

                                                 
1 This topic has been discussed in section 7.5.1. 
2 We could consider the case of perpetuities as the limit case for n , but it is hard to 
introduce a term structure on an infinite interval. 
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For known results, generalizing the formulae from (7.42) to (7.47) we find the 
following spot and forward elements of the structure in the discrete scheme, i.e. with 
the constraints (7.24): 

 the spot present value 

v(T,T+k) = a (T+k,T) = 1/m(T,T+k) = e
(T, )d

T

T k

 (8.2) 

 the delayed interest spot rate (on the unitary base) 

 i(T,T+k) = m(T,T+k)1/k -1 =  v(T,T+k)-1/k -1 = e
(T, )d

T

T k 1 k

-1 (8.3) 

 the spot return at maturity 

(T,T+k) = ( (T , )d
T
T k ) / k (8.4) 

 the advance interest spot rate (on the unitary base) 

d(T,T+k)   =  1 -  v(T,T+k)1/k   =  1 - e
(T, )d

T

T k 1 k

    (8.5) 3  

 the forward present value 

s(T;T+h,T+k) = v(T,T+k)/ v(T,T+h) = e
(T, )d

T h

T k

    (8.2') 

  the delayed interest forward rate (on the unitary base) 

i(T;T+h,T+k) = s(T,T+h,T+k)-1/(k-h)-1 = e
(T, )d

T h

T k 1 (k h )

-1 (8.3') 

 the forward return at maturity 

(T;T+h,T+k) = 
    
( (T , )d

T h

T k
) / (k h) (8.4') 

 the advance interest forward rate (on unitary base)  

 d(T;T+h,T+k) = 1 - s(T;T+h,T+k)1/(k-h) = 1 - e
(T, )d

T h

T k 1 (k h )

 (8.5') 

Generalizing what was seen in Chapter 4, where a flat rate structure is 
considered, the value in T * of O is called capital value of the annuity; or, more 

                                                 
3 From (8.3) and (8.5) it follows that i(T,T+h) and d(T,T+h) are (mean) annual rates in the 
interval from T to T+h. 
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precisely: initial value or present value of prompt annuity if T * = T; present value 
of deferred annuity if T *< T; final value if T *= T+n. The present value (then with 
T *  T) is expressed by  

  Va( T*) =
  hRh 0

n
 v(T*,T h) = hRh 0

n
 [1- d(T *,T h)]T+h-T*

 (8.6)  

The final value is expressed by  

 Vf ( T *) =   Rhh 0
n

 m(T h,T *) =  Rhh 0
n

 [1+  i(T h,T + n)]n h  (8.7) 

Relations (8.6) and (8.7) take into account the spot rates that are valid on the 
respective payment time. 

On the basis of considerations discussed for financial operations (see Chapter 4), 
the operations O" Wa(T *),T *) with T *  T and O" Wf (T *),T *) with T * = 
T+n  are fair according to the adopted financial laws. 

Clearly if T * and T are integers we can give an integer term structure of rates 
and values for n unitary periods. Let us assume such a position, adopting the 
formulations (7.25) and the positions from (7.26) to (7.39) and indicating the times 
(that are also the distances with sign from the origin 0, that we choose as the 
reference time for the rates structure) with lower case letters. 

Given the above, the initial value of the prompt annuity on the horizon [0,n], 
obtainable from (8.6) with T * = 0, is given by 

 Va(0)  =     Rkk 0
n

vk  =   Rkk 0
n

 (1+ik )-k  (8.6') 

or, according of the forward rates  in the term structure4,  

 Va(0)  =  Rkk 0
n  1/(r 1

k 1+ir-1,r )  (8.6") 

Example 8.1 

Using n=5, let us assign on the market at time 0 the structured system of interest 
rates on annual periods: 

i0,1 = 0.0418 ;  i1,2 = 0.0461;  i2,3 = 0.0524 ; i3,4 = 0.0485 ;  i4,5 = 0.0432 

                                                 
4 In (8.6") when k=0, the product is put equal to 1. The same observation is valid for some 
other following formula. 
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Let us consider an annual annuity-immediate on the horizon (0,5), formed by the 
monetary amounts 

R1 = 1,250 ;    R2  = 1,389 ;    R3 =1,450 ;    R4 = 1,310 ;   R5  = 1,100 

By using such data applied directly by (8.6") we obtain the present value of the 
prompt annuity 

Va(0) = R1(1.0418)-1 + R2(1.0418.1.0461)-1 + R3(1.0418.1.0461.1.0524)-1 +  

+ R4(1.0418 1.0461 1.0524 1.0485)-1 + R5(1.0418 1.0461 1.0524.1.0485.1.0432)-1 = 
= 5,704.78. 

If the spot rates ik , that we find by coherence with the previous ones, were given 
directly, resulting in 

i1 = 0.0418;  i2 = 0.0439;  i3 = 0.0468;  i4 = 0.0472;  i5= 0.0464 

(from which the prices would be 
v1 = 0.59877 ;  v2 = 0.917577 ;  v3 = 0.871890;  v4 = 0.831559 ;  v5= 0.797123 ) 

we could apply (8.6') still obtaining 5704.78. 

To obtain the initial value of annuities-deferred of m years, assuming a rate 
structure for m+n years, it is enough to multiply Va(0) by a discount factor relative 
to the deferment. Such a discount factor is given by vm and therefore the present 
value in 0 of the annuity-deferred  by m years with installments Rk at times m+k, (k 
= 0,....,n), is expressed, according to the rate structure, by 

 m/Va(0) =   (r 1
m 1+ir 1,r )-1 Rkk 0

n  (r 1
k 1+im r 1,m r )-1 (8.8) 

Example 8.2  

Let us consider at 0 the annual annuity-due, deferred by 3 years, consisting of 3 
payments:  

R3 = 10,500 ;  R4 =11,600 ;  R5 = 40,300 

The varying rates structure 

i0,1 = 0.030 ;     i1,2 = 0.035 ;    i2,3 = 0.040;     i3,4 = 0.037 ;     i4,5 = 0.034 

The present value of the deferred annuity is then 

  m/Va(0) = (1.030.1.035.1.040)-1 [10500 + 11600 (1.037)-1 +  
             + 40300 (1.037.1.034)-1] = 53459.71 
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Using the same hypothesis, the final value of the annuity at time n is expressed 
as a function of the accumulation forward factor rk,n = r(0;k,n) by 

 Vf (n)  =    Rk 
k 0
n

rk,n  =   Rkk 0
n

 (1+ik,n )n k  (8.7') 

or, as a function of the forward rates in the term structure 

 Vf (n)  =  
 

Rkk 0
n

(r k 1
n 1+ir 1,r )  (8.7") 

Relations (8.6"), (8.8) and (8.7") directly use the varying rates that come from 
the market conditions. 

Example 8.3  

On a three year interval, assuming the semester as a time unit, let us assign the 
(spot and forward) interest rates structure on a semiannual base as well as the 
semiannual  annuity-immediate, whose payments are 

R1 = 8,500 ;  R2 = 9,250 ;  R3 = 8,620 ;  R4 = 12,628 ;  R5 = 4,644 ;  R6 = 6,240 

Let us find the final value, extracting from the structure the following uniperiod 
forward rates: 

i1,6 = 0.0490 ; i2,6 = 0.0475 ; i3,6 = 0.0465;  i4,6 = 0.0450 ; i5,6 = 0.0445  

The final value of the annuity is then 

    Vf (6) =  8500 1.04905 + 9250 1.04754 + 8620.1.04653 + 12628.1.04502  + 

+ 4644 1.0445 + 6240 = 56693.59 

8.2. Amortizations in the case of term structures 

Extending what has been said in Chapter 6, with the positions and symbols 
defined above, we can develop the theory of amortizations assuming a financial law 
obtained according to a term structure. To remain closer to the financial market 
behavior, we will not assume the independence of the structure from the referring 
time.  

The amortization with varying rates has been considered in section 6.5 only for 
the case of uniperiod spot rates. It is appropriate to refer to this scheme when it is 
not realistic to assume the validity of the structure for the whole length of the 
amortization. For the opposite assumption, we assume then the variability of the 
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rates according to a more general rate structure scheme fixed at time 0 of the loan 
inception, where the amortization flow is, technically, an “annuity” for which the 
initial value calculated on the basis of such structure is equal to the debt to be 
amortized. The amortization installments are mostly periodic, thus annual, 
semiannual, etc.  

We will refer to cases of the annual period; for a period of a different length it is 
sufficient to change the unit of measure. In the presence of pre-amortization, it is 
sufficient to refer to the true amortization interval, in which the principal repayments 
are paid, following the one in which only interest is paid. 

However, in the case of varying installments (as far as the outstanding loan 
balance will not increase with time) it is obvious that, if the initial debt, the length of 
the amortization and the rate structure valid in the same interval are given, infinite 
solutions exist for the installments vector used to amortize the debt. This means that, 
from the lender point of view5, the payment of the lent amount and the encashment 
of such installments form altogether a fair operation in relation to the given rate 
structure. Instead, if the installment invariance is postulated, then the financial 
equilibrium equation gives the constant installment as the only unknown.  

We will limit our analysis to the following cases of amortization: 

 the general case of varying installments; 

 the particular case of constant installments; 

 the particular case of constant principal repayments; 

 the case of life amortization. 

8.2.1. Amortization with varying installments 

Let there be the initial debt S to be amortized in n unitary periods (in particular 
annual), according to a term structure given at initial time 0, for which formulations 
(7.25) and relations (7.26) and (7.39) hold true. The equivalence between debt and 
vector {Rk}, (k=0,1,....,n), of the installments paid at the assigned dates gives the 
constraint that defines a solution {Rk} for the amortization. This is found from (8.6') 
or (8.6") putting Va(0) = S. We then obtain the following relation, that is the 
constraint of financial closure between debt and amortization installments: 

                                                 
5 We highlight the lender point of view that is usually the “stronger party” in the contract. It is 
clear that the borrower adapts himself to the conditions fixed by the lender and accepts the 
contract if, on the basis of his utility and his alternative possibilities on the market, he 
considers convenient the conditions offered by the lender. 
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 S  =  Rkk 0
n

 vk = Rkk 0
n

 (1+ik )-k  =  Rkk 0
n (r 1

k 1+ir 1,r )-1 (8.9) 

where vk and ik correspond to the given ih,k on the basis of the known relations. 
Therefore, given S, n and the term structure, a vector of components Rk, 
(k=0,1,....,n), that satisfies (8.9) gives a solution to the amortization6. As already 
mentioned, some restrictions on the arbitrariness of {Rk} follow from the eventual 
constraint of the outstanding loan balance not increasing in time. In addition, we talk 
about amortizations 

  with delayed installments, if R0 = 0; 

  with advance installments, if Rn = 0. 

Due to (8.9) it is obvious that {ir-1,r} gives a rate structure of cost for the 
borrower, i.e. a generalized internal rate of return (GIRR) in the sense set out in 
section 4.4.2.  

As happens for a constant rate, each installment is divided into principal repaid 
and interest paid, and can, by convention, be paid by the debtor in a delayed or 
advance way: if both are paid delayed or advance, one has amortization with delayed 
or, respectively, advance installments.7 
  

Amortization with delayed installments 

The development of the delayed amortization schedule includes the interest 
amounts Ik , the principal repayments Ck and the outstanding balances Dk at time k, 
that follows from the following equations system  

  (k = 1, ... ,n)  

  

Ik  Dk 1 ik 1,k

Dk Dk 1 Ck

Rk Ik Ck

  (8.10) 

                                                 
6 It is obvious that independence from the transaction time, an assumption that in fact is not 
very realistic, could lead to the equality between forward and spot rates, i.e.: {i(0;h;k)} = 
{i(h,k)}, �h,k, from which it would follow that the outstanding amounts and outstanding 
loan balances expressed by (8.11) or (8.11') would coincide. However, if the amortization is 
agreed with indexed interests on the basis of the resulting market rates (where the agreed 
schedule in 0 on the basis of the term structure at this time is only an estimated calculatation), 
if the market does not behave as a “perfect market”, the inequality i(r-1,r)  i(0; r-1.r) can 
follow at the rth year with possible differences between estimated and final balance. In such a 
case some adjustments are needed. 
7 We do not consider here the case of advance interest payments and delayed principal 
repayments  sometimes used in the past in the particular case of German amortization (see 
Chapter 6)  because this scheme is not used often. 
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with the initial condition D0 = S. From here follows: 

Theorem. For a delayed amortization in the case of a term structure, from the 
recursive relations (8.10) for the outstanding loan balances we obtain 

 Dh = Rkk h 1
n

 sh,k   = 
 Rkk h 1

n ([r h 1
k 1+ir 1,r ) 1

 
(8.11) 

that extends to the case h>0 the relation of financial closure (8.9) with R0 = 0 (case 
h=0, S=D0). Therefore, k the exchange of the outstanding balance in k with the 
outstanding installment flow at their respective due dates is fair, i.e. on the basis of 
the given structure the outstanding balance coincides with the pro-reserve. 

Proof. Proceeding by induction, let us verify (8.11) for h=1. Since D0 is given by 
(8.9) with  R0 = 0 and taking into account (7.28'"), we obtain: 

I1 = i1 D0 = d1(R1 + Rkk 2
n   r 1,rsr 2

k ) ;  

C1 = R1  - I1 = R1 v1 - d1 kRk 2
n  r 1,rsr 2

k  

D1 = D0 - C1  =  (R1 v1 + Rk sr 1,rr 2
k

k 2
n ) - (R1 v1  -d1 kRk 2

n  r 1,r sr 2
k ] =  

=  kRk 2
n  (  r 1,rsr 1

k  +  1d   r 1,rsr 2
k )  = Rk sr 1,rr 2

k
k 2
n , 

because v1+d1 = 1. 

Let us then verify that if (8.11) is true for h 1, it is also true for h+1. Recalling  

(7.39'), if Dh = 
k Rk h 1

n   r 1,rsr h 1
k  then Ih+1= ih,h+1Dh = dh,h+1(Rh+1 

+
    

 kRk h 2
n   r 1, rsr h 2

k ); 
Ch+1 = Rh+1 - Ih+1 =  Rh+1 sh,h+1 - dh,h+1 kRk h 2

n  r 1,rsr h 2
k ;  then    Dh+1 = 

Dh - Ch+1 = (Rh+1sh,h+1 + Rkk h 2
n  sr 1,rr h 1

k ) - (Rh+1 sh,h+1 - 

dh,h+1 kRk h 2
n  r 1,r sr h 2

k ) =  
k Rk 2

n   r 1,rsr 2
k  ,  

because  sh,h+1 + dh,h+1 = 1.         

Example 8.4 

Let there be underwritten at time 0 a loan contract for €86000 to be amortized with 
delayed varying annual installments over 10 years, on the basis of a term structure 
expressed by spot factors vk (k=1,...,10) fixed at 0, from which by means of (7.31) 
we find the forward rates to apply annually. These rates are indicated in the 2nd 
column of the following Excel amortization schedule, the quantities of which follow 
from recursive relations (8.10) starting from a given principal repaid Ck indicated in 
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the 3rd column, according to a choice that gives higher payments in the central years. 
On the contrary, if we assigns the installments, satisfying (8.9) as in column 5, are 
used, obtaining the outstanding balance by (8.11), we find the interest paid (4th 
column) and then the principal repaid (3rd column). 

Debt  = 86000 Length  = 10 

Year  Forward rate Principal repaid Interest 
amount 

Installment Outstanding 
balance 

K      Ik-1,k    Ck   Ik   Rk   Dk 
0     86000.00

1 0.050 5000.00 4300.00 9300.00 81000.00

2 0.048 6000.00 3888.00 9888.00 75000.00

3 0.046 7000.00 3450.00 10450.00 68000.00

4 0.044 8000.00 2992.00 10992.00 60000.00

5 0.042 12000.00 2520.00 14520.00 48000.00

6 0.040 15000.00 1920.00 16920.00 33000.00

7 0.043 12000.00 1419.00 13419.00 21000.00

8 0.046 8000.00 966.00 8966.00 13000.00

9 0.049 7000.00 637.00 7637.00 6000.00

10 0.052 6000.00 312.00 6312.00 0.00

 86000.00   

Table 8.1. Example of delayed amortization 

The Excel instructions are as follows. The first three rows are for data and titles; 
C1: 86000; E1: 10. 4th row: A4: 0; F4:= C1; other cells: empty. 5th to 14th rows: 

column A (years):  A5:= A4+1; copy A5, then paste on A6 to A14; 
column B (forward rates):  from B5 to B14: insert data; 
column C (principal repayments): from C5 to C14: insert data with constraint: 
 "SUM(C5:C14)"= C1 in C15 (to control); 
column D (interest payments):   D5:= F4*B5; copy D5, then paste on D6 to D14; 
column E (installments): E5:= C5+D5; copy E5, then paste on E6 to E14; 
column F (outstanding balances):   F5:= F4-C5; copy F5, then paste on F6 to F14. 

Amortization with advance installments  

The development of the advance amortization schedule includes the installments 
kR made by the interest payments kI  and by the principal repayments kC , payable 

for the (k+1)th period soon after the integer time k, and also the outstanding balances 
Dk at time k, that results from the following equation system 
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1

1

(0; , 1)

( 0,..., 1)
k k

k k k

k k k

I D d k k

k n D D C

R I C

 (8.10') 

using the initial constraint D0 = S. Owing to (8.10') we can deduce the following 
theorem. 

Theorem. For an advance amortization in the case of a rates term structure, from 
the recursive relations (8.10') we obtain for the outstanding balances the expression  

 Dh  = 
1

,
n

k h kk h R s   = 
1

1,1 1 )(n
k r rk h

k
r hR d  (8.11') 

This formula extends to the case h>0 the relation of financial closure (8.9) with 
Rn=0 (case h=0, S=D0). Therefore, h the exchange of the outstanding balance in h 
with the flow of outstanding installments at their due dates is fair, i.e. in the case of 
this structure the outstanding balances coincide with the pro-reserve. 

The proof of this theorem, that gives rise to (8.11'), proceeds by induction 
analogously to the one that leads to (8.11), taking into account the identities 

1 - dr-1,r = sr-1,r = (1 + ir-1,r)-1  

which give a value equal to vr/vr-1 in the perfect market hypothesis. Although for 
sake of brevity it is omitted, we would say that in the induction it is convenient to 
proceed backwards, i.e. verifying (8.11') for h=n-1 and proving that if it holds true 
for an index h (with 1 h n-1), it is also true for h-1. 

Example 8.5  

Let us consider again Example. 8.4 assuming a loan for the same amounts, 
length and distribution of principal repayments, but advance installments and then 
advance forward rates dk-1,k, choosing those equivalent to the delayed rates in 
Example 8.4. By working in Excel we easily obtain the following table. 
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 Debt  = 86000.00 Length  = 10   

Year Delayed 
forward rate 

Advance 
forward rate 

Outstanding 
balance 

Principal 
Repaid 

Interest 
paid 

Installment 

k  ik-1,k  dk-1,k  Dk   ant. Ck   ant. Ik    ant. Rk 
0   86000.00 5000.00 3857.14 8857.14 

1 0.050 0.047619 81000.00 6000.00 3435.11 9435.11 

2 0.048 0.045802 75000.00 7000.00 2990.44 9990.44 

3 0.046 0.043977 68000.00 8000.00 2528.74 10528.74 

4 0.044 0.042146 60000.00 12000.00 1934.74 13934.74 

5 0.042 0.040307 48000.00 15000.00 1269.23 16269.23 

6 0.040 0.038462 33000.00 12000.00 865.77 12865.77 

7 0.043 0.041227 21000.00 8000.00 571.70 8571.70 

8 0.046 0.043977 13000.00 7000.00 280.27 7280.27 

9 0.049 0.046711 6000.00 6000.00 0.00 6000.00 

10 0.052 0.049430 0.00    

    86000.00   

Table 8.2. Example of advance amortization 

The Excel instructions are as follows. The first three rows are for data and titles; 
C1: 86000; E1: 10. 4th to 14th rows: 

column A (year)       A5:= A4+1; copy A5, then paste on A6 to A14; 
column B (delayed forward rate)      B4 empty; from B5 to B14 insert date; 
column C (advance forward rate)    C4:= 1-(1+B5)^-1; copy C4, then paste on C5 
      to C13;  
column D (outstanding loan balance) D4:= C1; D5:= D4-E4; copy D5, then paste on 
        D6 to D14; 
column E (advance principal      E4 to E13 insert data with the constraint  

    “SUM(E4:E14)”=C1 in E15 (check); 
column F  (advance interest paid)  F4:= D5*C5; copy F4, then paste on F5 to F13; 
column G (installment)  G4:= E4+F4; copy G4, then paste on G5 to G13.  

Observation 
In the delayed amortizations, from system (8.10) the following corollary 

holds. 

Corollary. If we have fairness, each vector {Rk} of delayed amortization 
installments  satisfies, for k=1,...,n, 

 Rk  =    Dk-1 ik-1,k  + (Dk-1 - Dk)  (8.12) 

i.e. the following recursive relation holds 

 Dk  = Dk-1(1 +  ik-1,k)  - Rk (8.13) 
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Analogously in advance amortizations from system (8.10') we can deduce the 
following corollary: 

Corollary. If we have fairness, each vector { kR } of advance amortization 
installments, satisfies, for k=0,...,n-1 

 kR = Dk+1 dk,k+1 + (Dk  - Dk+1)  (8.12') 

i.e. the following recursive relation  

 Dk  = Dk+1(1 - dk,k+1) + kR  (8.13') 

holds. 

Proof. Since, owing to the fairness of this operation, Dn = 0 holds true, if in the 
delayed case we write (8.13) for k=1,...,n, with subsequent substitutions we obtain 
the relation of financial closure and, writing such relation for  k=h+1,....,n, we easily 
obtain (8.11). Analogously if in the advance case we write (8.13') for k=0,...,n-1,  
with subsequent substitutions we obtain the relation of financial closure and, writing 
it for k=h,....,n-1 we easily obtain (8.11'). 

8.2.2. Amortization with constant installments 

The conclusions for this major case of refund techniques are obtained from the 
results in section 8.2.1 using Rk or kR  = constant = R. Therefore, given the initial 
debt S to be amortized in n periods, according to a given (or assumed) term structure 
at initial time 0, for which formulations (7.25) and the relations from (7.26) to (7.39) 
hold true, the installment solution is deduced introducing constraint (8.9). Therefore 
we obtain the following relation: 

Delayed case  

Using R0 = 0, Rk = R, (k=1,...,n), in the financial closure relation (8.9), the 
installment R is given by 

 R  =  S / (r 1
k 1+ir 1,r )-1

k 1
n

 (8.14) 

Recursive relations (8.10) hold, where the outstanding balances Dh are expressed 
by 

 D =  R (r h 1
k 1+ir 1,r )-1

k h 1
n

 (8.15) 
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Exercise 8.1  

 Considering again the loan in Example 8.4 with the data given there, find the 
amortization schedule under the constraint that the delayed installment is constant.  

 A. Finding the installment by means of (8.9) we obtain R=10916.95; from 
here, applying recursively (8.10) with Rk = R , we obtain, using Excel for the 
following schedule. 
 

debt  = 86000 length  = 10 installment= 10916.95 

Year Forward rate Discount factor Interest paid Principal repaid Outstanding 
balance 

K ik-1.k by (8.14) Ik Ck Dk 
0  1  86000.00 

1 0.050 0.952381 4300.00 6616.95 79383.05 

2 0.048 0.908760 3810.39 7106.56 72276.48 

3 0.046 0.868796 3324.72 7592.23 64684.25 

4 0.044 0.832180 2846.11 8070.84 56613.41 

5 0.042 0.798637 2377.76 8539.19 48074.22 

6 0.040 0.767920 1922.97 8993.98 39080.24 

7 0.043 0.736261 1680.45 9236.50 29843.74 

8 0.046 0.703883 1372.81 9544.14 20299.60 

9 0.049 0.671003 994.68 9922.27 10377.33 

10 0.052 0.637836 539.62 10377.33 0.00 

  7.877658   

Table 8.3. Example of amortization with constant delayed installments 

The Excel instructions are as follows. The first three rows are for data, columns 
titles and one calculation: B1: 86000; D1: 10; F1:= B1/C15. 4th row: A4: 0; C4: 1; 
G4:= B1; 5th to 15th  rows: 

column A (years):  A5: = A4+1; copy A5, then paste on A6 to A14; 
column B (forward rates): insert forward rates (see Example 8.4); 
column C (discount factors): C5:= C4*(1+B5)^-1; copy C5, then paste on C6 

to C14; C15:= SUM(C5:C14).  
column D (interest payments): D5: = F4*B5; copy D5, then paste on D6 to B14. 
column E (principal repayments):   E5: = $F$1-D5;  copy E5, then paste on E6 to 

E14. 
column F (outstanding balances): F5: = F4-E5; copy F5, then paste on F6 to F14.  
other cells    empty.  
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Observation 

An amortization that keeps constant installments in a varying rate regime is 
possible only in the case that the rate structure is agreed in 0 (or that the perfect 
market assumption hold true), as assumed in the previous examples. If these 
assumptions fail and the amortization proceeds in time in a flexible form on the 
basis of annual varying spot rates ik 1,k  (with complete notation) not predictable in 
0 and that will be different from i0;k 1,k , then the schedule cannot be fixed in 
advance and we have to proceed as discussed in section 6.5, point a. We adopted in 
this section the complete formulation of the rate structure because many contracting 
times are here considered here.  

In particular, we can proceed for subsequent renovations of the contract, 
calculating the installment and its elements each year that the rate changes (using 
(6.52) and (6.52')) on the basis of the new rate, the outstanding balance, and the 
remaining length. This procedure is consistent with the constant installment scheme, 
because if after the renovation the rate no longer changes, the new installment will 
remain constant, as can be seen from equation Dh = R an-h |i .  

Example 8.6 

Let us give an example of the second procedure, that uses the spot rates i(k-1;k-
1,k). For an easy comparison, let us use the input data of Example 8.4, obtaining the 
following Excel table. 

 

Table 8.4. Example of delayed amortization with spot rates 

 Debt  = 86000 Length  = 10 

Year spot rate  installment interest paid principal repaid outstanding 
balance 

K I(k-1; k-1, k)   Rk   Ik   Ck   Dk 
0    86000.00

1 0.050 11137.39 4300.00 6837.39 79162.61

2 0.048 11038.42 3799.81 7238.61 71924.00

3 0.046 10948.97 3308.50 7640.46 64283.53

4 0.044 10869.12 2828.48 8040.65 56242.89

5 0.042 10798.96 2362.20 8436.76 47806.13

6 0.040 10738.55 1912.25 8826.31 38979.82

7 0.043 10814.58 1676.13 9138.45 29841.37

8 0.046 10875.97 1372.70 9503.27 20338.10

9 0.049 10922.44 996.57 9925.87 10412.24

10 0.052 10953.67 541.44 10412.24 0.00
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The Excel instructions are as follows. The first three rows are for data and 
columns titles; C1: 86000; E1: 10. 4th row: A4: 0; F4:= C1; other cells: empty; 5th to 
15th  rows: 

column A (years): A5:= A4+1; copy A5, then paste on A6 to A14; 
column B (forward rates): insert data from B5 to B14; 
column C (installments): C5:= F4*B5/(1-(1+B5)^-($E$1+1-A5)); copy 
 C5, then paste on C6 to C14; 
column D (interest payments): D5:= F4*B5; copy D5, then paste on D6 to D14; 
column E (principal repayments): E5:= C5-D5; copy E5, then paste on E6 to E14; 
column F (outstanding balances): F5:= F4-E5; copy F5, then paste on F6 to F14. 

Advance case  

Using Rn = 0,  Rk = R , (k=0,...,n-1), in the relation of financial closure (8.9), the 
installment R  is given by 

 1
1,1 1/ 1 1- )(n

r rk
k
rR S d  (8.14') 

Recursive relations (8.10') hold true, where the outstanding balances Dh are 
expressed by 

 Dh  = 1
1,1 11 (1 )n

r rk h
k
r hR = d  (8.15') 

Exercise 8.2 

Let us consider a loan of €45,000 with varying rates, a length of 5 years and 
forward rates, fixed when the contract is signed. Calculate the amortization 
schedule, where the rates are specified and where the advance installments are 
constant.  

A. To calculate the installment, apply relation (8.14') and for the principal and 
interest payments (that cannot be calculated starting form the initial debt) we first 
have to calculate the outstanding balances at the intermediate integer times by means 
of (8.15') using the identity:  

 
(

r h 1
k

1 dr 1,r ) =  (
r 1
k

1 dr 1,r )/ (r 1
h

1 dr 1,r )  

We then take into account the 2nd of (8.10') for the principal repayments and the 
1st and 3rd of (8.10') for the interest paid. Proceeding with Excel, we obtain the 
following schedule with two sections, where the second is an instrument to calculate 
on single columns the outstanding balances.  
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 Debt  = 45000.00 Length  = 6 Installment= 9865.56 

Year Delayed 
forward rate 

Advance 
forward rate

Spot discount 
factor 

Outstanding 
balance 

Principal  
repaid 

  Interest 
paid 

k ik-1.k dk-1.k by(8.14') Dk Ant Ck  Ant Ik 
0  1 45000.00 8108.84 1756.72 

1 0.050 0.047619 0.952381 36891.16 8568.33 1297.23 

2 0.048 0.045802 0.908760 28322.82 9016.53 849.03 

3 0.046 0.043977 0.868796 19306.29 9440.73 424.83 

4 0.045 0.043062 0.831384 9865.56 9865.56 0.00 

5 0.047 0.044890 0.00  

   4.561321 45000.00  

    

    

Year Outstanding 
balance 1 

Outstanding 
balance. 2 

Outstanding 
balance 3 

Outstanding 
balance.4 

Outstanding 
balance 5  

 

k D1 D2 D3 D4 D5  

1 1.000000  

2 0.954198 1.000000  

3 0.912236 0.956023 1.000000  

4 0.872953 0.914854 0.956938 1.000000  

 36891.16 28322.82 19306.29 9865.56 0.00  

Table 8.5. Example of amortization with constant advance installments 

The Excel instructions are as follows. 

1st sector. C1: 45000; E1: 6; G1:= C1/D10; other cells: empty; 2nd and 3rd rows for 
titles; 4th to 10th rows: 

column A (year): A4: 0; A5:= A4+1; copy A5, then paste on 
A6 to A9; 

column B (delayed forward rate): B4 empty; insert data from B5 to B9; 
column C (advance. forward rate): C4 empty; C5:= 1-(1+B5)^-1; copy C5, then 

paste on C6 to C9; 
column D (discount factor 0-k): D4: 1; D5:= D4(*(1-C5); copy D5, then paste 

on 
 D6 to D8; D9 empty; D10:= SUM(D4:D9); 
column E (outstanding debt):   E4:= C1; E5:= B19; E6:= C19; E7:= D19; 
 E8:= E19; E9:= F19 
column F (principal repaid): F4: E4-E5; copy F4, then paste on F5 to F8; 
column G (interest paid):              G4:= $G$1-F4; copy G4, then paste on G5 to 

G8. 
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2nd sector. 13th and 14th rows for titles; 15th to 19th rows: 

column A (year): A15: 1; A16:= A15+1; copy A16, then paste on 
 A17 to A18; A19 empty; 
column B (outstanding balance 1): B15:= D5/D$5; copy B15, then paste on B16 to 
  B18; B19:= $G$1*SUM($B$15:$B$18);   
column C (outstanding balance 2): C15 empty; C16:= D6/D$6; copy C16, then 

 paste on C17 to C18; C19:= 
$G$1*SUM($C$16:$C$18);   

column D (outstanding balance 3): D15,D16 empty; D17:= D7/D$7; copy D17, then 
 paste on D18; D19:= 
$G$1*SUM($D$17:$D$18); 

column E (outstanding balance 4) E15,E16,E17 empty; E18:= E8/E$8; copy E18, 
  then paste on E18; E19:= $G$1*$E$18; 
column F (outstanding balance 5) F15,F16,F17,F18 empty; F19:= $G$1-F8 . 

8.2.3. Amortization with constant principal repayments 

In this case, if the structure of the per period forward rates {ih,k} is given, 
according to the installment due dates on the time interval from 0 to n for the debt S 
to be amortized, the calculation of such installments gives a unique solution, in the 
following way. 

First of all, the constant principal repaid of the n installments is calculated, which 
is simply S/n. This implies that the outstanding balances decrease in arithmetic 
progression with ratio S/n; then after h payments we have an outstanding balance of  
S(n-h)/n. 

For each period the interest rate is found from the vector {ik-1,k}, (k=1....,n) and 
then the installments Rk are 

  in the delayed case: 

 
  
R0 0 ;  Rk

S

n
 [1+ (n - k +1) ik-1,k ]  ,(k 1,...,n)  (8.16) 

  in the advance case: 

 11 1 0 1 0k k,k+ n
S

R =  [ +(n - k - ) d ]  , (k = ,...,n - ) ;  R =
n

 (8.16') 

Exercise 8.3 

Let us consider again the problem of amortization and the data used in Example 
8.4, but now applying the method with constant principal repayments. Using (8.16) 
we obtain the following Excel table. 
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 Debt  = 86000 Length  = 10  

Year Forward rate  Principal repaid Interest paid Installment Outstanding 
balance 

k ik-1.k Ck Ik Rk Dk 
0  86000.00 

1 0.050 8600.00 4300.00 12900.00 77400.00 

2 0.048 8600.00 3715.20 12315.20 68800.00 

3 0.046 8600.00 3164.80 11764.80 60200.00 

4 0.044 8600.00 2648.80 11248.80 51600.00 

5 0.042 8600.00 2167.20 10767.20 43000.00 

6 0.040 8600.00 1720.00 10320.00 34400.00 

7 0.043 8600.00 1479.20 10079.20 25800.00 

8 0.046 8600.00 1186.80 9786.80 17200.00 

9 0.049 8600.00 842.80 9442.80 8600.00 

10 0.052 8600.00 447.20 9047.20 0.00 

Table 8.6. Example of amortization with constant principal repayments 

The Excel instructions are as follows. The first three rows are for data and titles.  
C1: 86000; E1: 10. 4th row: A4: 0; F4:= C1; other cells: empty. 5th to 14th rows: 

column A (years):  A5:= A4+1; copy A5, then paste on A6 to A14; 
column B (forward rate):  B5 to B14: insert data; 
column C (principal repaid): C5:= C$1/E$1; copy C, then paste on C6 to C14; 
column D (interest paid):  D5:= F4*B5; copy D5, then paste on D6 to D14; 
column E (installment): E5:= C5+D5; copy E5, then paste on E6 to E14; 
column F (outstanding balance):  F5:= F4-C5; copy E5, then paste on F6 to F14. 

8.2.4. Life amortization 

Having fully described this actuarial operation in section 6.3, we limit ourselves 
here to briefly considering the variations linked to the introduction into a scheme of 
advance life amortization of a discrete term structure that can be identified by a 
uniperiod forward rates {ir-1,r} agreed at time 0, indicating with * the quantities that 
depend on it. 

Let S be the debt of the annual loan; n the length in years; {ir-1,r} the structure of 
the adopted rates, that gives rise to a law that generalizes the IRR of the lender-
insurer; x the integer age of the borrower at the drawing up of the contract. In 
addition, let us indicate the actuarial discount factor on the interval (z,z+1) for the 
borrower with 
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 1Ex
* lx z 1

lx z
(1 iz,z 1) 1 (8.17) 

The actuarial discount factor on the interval (0,z) is given by 

 z Ex
* lx r 1

lx r

(1 ir,r 1) 1
r 0

z 1  (8.18) 

Then 1* *
10

z
z x x rrE E  holds true. Let us now take into account now that the 

uniperiod discount forward rates dr-1,r  are linked to the interest forward rates by the 
relation 

 1 dr 1,r (1 ir 1,r ) 1 sr 1,r  (8.19) 

Thus, the constraint of financial closure on the advance installments *
z  that 

generalizes (6.28) is written as (considering (8.18)): 

 
1 * *
0

n
z z xz E S  (8.20) 

Proceeding analogously to section 6.3.1, if the principal repayments zc  are 
given under the constraint (6.29) we find the outstanding balances Dz  on the basis 
of the 1st part of (6.32), from which the advance actuarial interest payments 

*
zj comes, is given by 

    *
, 1 , 1 1 1 1(1 ) (1  )*

z z z z z x z z x+z zj d d q D E D , z = 0,...,n-1   (8.21) 

and using (8.21) we obtain the advance installments  

 * * *
1 1     z z z z x z zc j D E D  ,   z = 0,...,n-1 (8.22) 

If, instead, the installments *
z  are given subject to (8.20), as far as the 

outstanding balances the formula 

 
1 * *n

z k k xk zD E ,   z = 0,...,n-1 (8.23) 

that generalizes (6.31) holds true. The values (8.23) thus allow us to calculate zc  

using the 1st of (6.32) and *
zj  using (8.21).  

If in z the technical bases, fixed in 0, are not changed, (8.23) also gives the 
prospective reserves Wz  while the retrospective reserves are expressed by  



Annuities, Amortizations and Funding in the Case of Term Structures     351      
 

 
1 *
0

z *
k k xk

z *
z x

S E
M

E
  ,    z = 1,...,n-1 (8.24)   

 Exercise 8.4 

Using the financial data in Example 8.4, calculate the advance life amortization 
schedule with the demographic data in Exercise 6.6. 

A. On the basis of the advance uniperiod forward rates deducible from the 
delayed ones, assigned in the following 3rd column, we obtain the required schedule. 
 

  Debt = 86000    Length =  10  

Year Survival 
table 

Forward 
rate 

Actuarial 
discount factor

Principal 
repaid 

Outstanding 
balance 

Interest 
paid 

Installment 

Z l42+z iz-1.z E*42+z cz Dz Jz z 
0 96400  0.950682 5000 86000 3994.78 8994.78 

1 96228 0.050 0.952394 6000 81000 3570.47 9570.47 

2 96046 0.048 0.954062 7000 75000 3123.78 10123.78 

3 95849 0.046 0.955676 8000 68000 2659.45 10659.45 

4 95631 0.044 0.957234 12000 60000 2052.76 14052.76 

5 95386 0.042 0.958776 15000 48000 1360.38 16360.38 

6 95112 0.040 0.955708 12000 33000 930.13 12930.13 

7 94808 0.043 0.952736 8000 21000 614.44 8614.44 

8 94482 0.046 0.949667 7000 13000 302.00 7302.00 

9 94123 0.049 0.946763 6000 6000 0.00 6000.00 

10 93746 0.052  86000 0  

total   86000  

Table 8.7. Example of life amortization 

The Excel instructions are as follows. The first three rows are for titles and data.  
C1: 86000; G1: 10. 4th to 14th rows: 

column A (year): A4: 0; A5:= A4+1; copy A5, then paste on A6 
to A14; 

column B (survival table): insert data from B4 to B14; 
column C (forward rate): insert data from C5 to C14; 
column D (actuarial discount factors): D4:= B5*(1/(1+C5))/B4;  copy D4, then  

paste on D5 to D13; D14 empty; 
column E (principal repaid):     insert data from E4 to E13 with the 

constraint: “SUM (E4:E13)” = C1, in E15; 
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column F (outstanding balance):    F4:= C1; F5:= F4-E4; copy F5, then paste on 
F6 to F14; 

column G (interest paid):   G4:= (1-D4)*F5; copy G4, then paste on G5 
to G13; G14 empty; 

column H (installment): H4:= E4+G4; copy H4,then paste on H5 to 
H13; H14 empty. 

8.3. Updating of valuations during amortization 

We can generalize to the case of varying rates, according to a term structure, the 
considerations developed in section 6.6 about residual valuations (pro-reserves) of 
financial operations with rates changed to the initial rates. Such observations were 
useful about calculations regarding assignments of a credit, firm valuations, etc. with 
the application of rates used on the market at the time of calculation. If we are 
talking about residual valuations regarding gradual amortizations, we use 
Makeham’s formula (see section 6.6.2).  

With reference to the general amortization of a loan drawing up in 0, shown in 
section 8.2.1, we can calculate at time  t   the loan pro-reserve Wt , usufruct Ut 
and bare ownership Pt. However it is important that such valuations often have to be 
made according to the term structure given by the market at time t,  summarized   
using the complete notation, because of plurality of reference times  by 
{i(t;h,k)},(t h<k) that, under the hypothesis of dependence on valuation time, differs 
from that valid at the loan issue, summarized by {i(0;h,k)}, according to which the 
installments, interest and principal payments have been calculated. 

Let us refer to a delayed amortization (but the changes for the case of advance 
amortization are easy) and assigning the payments Rk satisfying (8.9) as well as the 
interest paid Ik and the principal repaid Ck , satisfying the recurrent system (8.10) 
and then coherent with the structure {i(0;h,k)}. Then the pro-reserve Wt at time 
t , valued according to forward rate structure {i(t;h,k)} equivalent to that of spot 
prices v(t,k), is given by 

 Wt   =  Rkk t 1

n
 v(t,k) = Rkk t 1

n 1
1 1+ ( ; -1, )[ ]k

r t i t r r
 (8.25) 

having considered the constraints between prices and rates, effective in a coherent 
market. The pro-reserve Wt  is the sum of usufruct Ut, the present value of residual 
interest payments Ik, and bare ownership Pt, present value of residual principal 
payments Ck , valued according  to the updated structure {i(t;h,k)}. Then we have: 

 Ut Ikk t 1

n
 v(t,k)   ;   Pt Ckk t 1

n
 v(t,k)  (8.26) 
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where Ik  and Ck  are obtained using (8.10).  

If the payments subject to constraint (8.9) and the forward rates’ structure are 
agreed in advance, owing to (7.36) 

 Ut v(t,k)
k t 1

n
 i(0;k 1,k) Ruu k

n
 s(0;k 1,u)  (8.27) 

holds for the usufruct; 

       
1

( , ) (0; 1, )  (0; 1, )
n n

t t t uk t u k
P W U v t k i k k R s k ukR  (8.27') 

holds for the bare ownership.  

Example 8.7 

Let us apply the previous formulae on a delayed amortization with the given 
principal repaid on a debt of €100.000 and time length 5 years, for valuing pro-
reserves, split into usufruct and bare ownership components, in the rate structure 
hypothesis changing at each end of year.  

Using an Excel table, in the first part we calculate the delayed amortization 
schedule plan of € 100.000 in 5 years, having assigned the principals repaid and rate 
structure.  In the second  part, recalling relation (8.25) between unit spot prices and 
forward rates, we obtain pro-reserves as well as usufructs and bare ownerships 
according to modified rates, using (8.25) and (8.26) under the hypothesis that in 
each year all the varying rates after the first increase of 0.2%. The obtained pro-
reserves can be compared with outstanding loan balances, reminding us that if the 
rate change does not occur, in each period we should have equality. Carrying out the 
calculations we obtain the following table.  
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Table 8.8. Calculation of pro-reserves, usufructs and bare-ownerships 

The Excel instructions for the first part are analogous to that specified in 
Example 8.4 which works out this type of amortization kind. The instructions for the 
second part are as follows.  

12th to 15th rows:    titles  
16th to 20th rows:    calculation of unit prices (as discount factors): 
column  A (year): A16: 1; A17:= A16+1; copy A17, then paste on 

A18 to A20; 
column  B (updated fwd rate): B16 empty; input of data from B17 to B20; 

            PART 1  

 Debt  = 100000 Length = 5  

Year Forward rate Principal repaid Interest paid Installment Outstanding 
balance 

K ik-1,k Ck Ik Rk Dk 
0  100000.00 

1 0.040 10000.00 4000.00 14000.00 90000.00 

2 0.043 20000.00 3870.00 23870.00 70000.00 

3 0.046 30000.00 3220.00 33220.00 40000.00 

4 0.044 30000.00 1760.00 31760.00 10000.00 

5 0.042 10000.00 420.00 10420.00 0.00 

   

          PART 2  

  Calculus of spot rates  

Year Modified 
forward rate 

Spot price Spot price Spot price Spot price 

K  V1,k v2,k v3,k v4,k 

1  1.000000  

2 0.045 0.956938 1.000000  

3 0.048 0.913109 0.954198 1.000000  

4 0.046 0.872953 0.912236 0.956023 1.000000 

5 0.044 0.836162 0.873789 0.915731 0.957854 

   

                          Calculation of pro-reserves, usufructs and bare ownerships  

 Year Pro-reserve Usufruct Bare ownership

 k Wk Uk Pk 

 1 89613.36 8531.14 81082.21

 2 69775.96 5045.05 64730.91

 3 39905.20 2067.21 37838.00

 4 9980.84 402.30 9578.54
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column  C (v(1,k)): C16: 1; C17:= C16*(1+$B17)^-1; copy C17, 
then paste on C18 to C20; 

column  D (v(2,k)): D16 empty; D17: 1; copy C17, then paste on 
D18 to D20;  

column  E (v(3,k)): E16, E17 empty; E18: 1; copy C17, then paste on 
E19 to E20;    

column  F (v(4,k)): F16, F17, F18 empty; F19: 1; copy C17, then 
paste on F20. 

21th row: empty; 22th to 24th rows: titles. 
25th to 28th rows: calculation of pro-reserves, usufructs and bare ownerships: 
column B (year): B25: 1; B26:= B25+1; copy B26, then paste on 

B27 to B28; 
in the following right-side columns we calculate “scalar products between vectors” 
using Excel function “MATR-SUM-PRODUCT”  here abreviated as MSP: 
column C (pro-reserve = scalar product between installments and prices) 
  C25 := MSP(E7:E10;C17:C20);  C26 := MSP(E8:E10;D18:D20);  
  C27 := MSP(E9:E10;E19:E20);  C28 := MSP(E10;F20);  
column D (usufruct = scalar product between interest paid and prices) 
  D25 := MSP(D7:D10;C17:C20);  D26 := MSP(D8:D10;D18:D20);  
  D27 := MSP(D9:D10;E19:E20);  D28 := MSP(D10;F20);  
column E (bare ownership = scalar product between principal repaid and prices) 
  E25 := MSP(C7:C10;C17:C20);  E26 := MSP(C8:C10;D18:D20);  
  E27 := MSP(C9:C10;E19:E20);  E28 := MSP(C10;F20). 

8.4. Funding in term structure environments 

We can generalize the problem already considered in section 6.4, by assigning 
the equivalence relation between: 

 a monetary amount that has to be set up at a given maturity t;  

 a concordant payments set, then an annuity, with tickler before t and 
embedded into a financial structure giving accrued interest, fit to give such an 
amount at t. 

For the sake of simplicity we assume periodic payments as in section 8.1 and for 
the annuity a horizon of n periods (in particular, n years). Moreover, let us settle the 
term structure giving the uniperiod forward immediate rates {ir-1,r)}. Then the 
funding problem is solved if, having fixed the capital Gn at maturity n, in (8.7") we 
put Vf (n) = Gn.  

If this funding is made by payments at the end of the period (delayed payments), 
it is enough to put R0 = 0. Then the constraint between Gn that is to be set up in n 
and a vector {Rk} of payments suitable for the funding is 
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 Gn   = 
    kRk 1

n 1
(r k 1

n 1+ ir 1,r ) +  Rn  (8.28) 

Similarly if the sinking fund is accumulated with payments at the beginning of 
the period (advance payments), it is enough to put Rn = 0. Then the constraint by Gn 
in n and a vector kR of suitable payments is 

 11
, 10 (1 )nn

n k r rk r kG R i  (8.28') 

The accumulated capital sum at time h<n with delayed payments is  

                       Mh  =  Gh  =      kRk 1
h 1

(r k 1
h 1+ ir 1,r ) + Rh  (8.28") 

and, by advance payments, it is 

 Mh  =  Gh  =  11
, 10 (1 )hn

k r rk r kR i  (8.28"') 

For distinguishing the principal shares from interest shares, as G0 = 0, in the  
delayed case such shares, denoted by Ch and Ih , are constrained by the system 

 

    

(h 1,... ,n)

Ch Gh Gh 1

Ih Gh 1 ih 1,h

Ch Rh Ih

 (8.29) 

which implies the recursive equation 

 Gh-1(1+ih-1,h) + Rh  =  Gh    (8.30) 

that allows us to find (8.28) and (8.28") again. In the advance case, denoting the 
principal repaid and interest paid with hC  and hI  and recalling (8.19), they are 
constrained by the system  

 
1

1 , 1( 0,..., 1)  
h h h

h h h h

h h h

C G G

h n I G d

C R I

 (8.29') 

which implies the recursive equation 

  Gh  + Rh = Gh+1 (1-dh,,h+1) (8.30') 

for which it is possible to find (8.28') and (8.28"') again.  
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If we consider constant delayed payments R, given as Gn and according to 
(8.28), they are obtained by  

 
1

1,111 (1+ ) /{ }n n
n r rr kkG iR  (8.31) 

If we consider constant advance payments, denoting them by R  and according 
to (8.28'), the result is 

 1 1
, 10/ 1+ )(n n

n r rk r kR G i   (8.31') 

Exercise 8.5 

Mr. John wishes to obtain €100.000 by annual constant payments in advance 
during 5 years, on a savings account yielding according to given forward rates. Let 
us calculate the constant payment and the sequence of  balances. 

A. The given rates are written in the 2nd column of the following Excel table to 
carry out the calculations. According to (8.31') the 3rd column allows us to calculate 
the constant payment R , which results in €17595.14. The 4th column gives the 
balances (i.e. the retro-reserves) at the end of each year. 

 
FUNDING IN ADVANCE DURING 5 YEARS  

Capital = 100000  Installment = 17595,14  

   

Year Delayed 
forward rate 

Accumulation 
factor 

Retro-reserve Interest paid Principal repaid 

k ik,k+1 k,4 Gk Ik Ck 
 0 0.040 1.233106 0.00 703.81 18298.95 
1 0.043 1.185679 18298.95 1543.45 19138.59 
2 0.046 1.136797 37437.54 2531.50 20126.65 
3 0.044 1.086804 57564.18 3307.01 20902.15 
4 0.041 1.041000 78466.34 3938.52 21533.66 
5  1.000000 100000.00   

 5.683387  12024.29 100000.00 

Table 8.9. Example of funding in advance 

The Excel instructions are as follows. The first 5 rows devoted to data, titles and 
calculus of constant installments. D1: 5; B2: 100000; E2:= B2/C12; 6th to 11th rows: 

column A (year): A6: 0; A7:= A6+1; copy A7, then paste on A8-A11; 
column B (delayed forward rate):  data input from B6 to B10; 
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column C (accum. fact. (k,4)): C11: 1; C10:= C11*(1+B10); copy C10, then paste 
  on C9 to C6;  
column D (retro-reserve):    D6: 0; D7:= (D6+E$2)*(1+B6); copy D7, then paste 

on D8 to D10;  
column E (interest paid):   E6:= (1-1/(1+B6))*D7; copy E6, then paste on E7 

tE10;  
column F (principal repaid):  F6:= E$2+E6; copy F6, then paste on F7 to F10. 
row 12 (totals):                 C12:= SUM(C6:C10); copy C12, then paste  

on E12 to F12.  
Other cells: empty. 

8.5. Valuations referred to shared loans in the term structure environment 

In sections 6.8 and 6.9, all questions concerning the issue and management of 
bonds have been considered, from the point of view of the organization of the 
operation and of the valuation of reserves, usufructs and bare ownerships, with 
special reference to relations between bond prices and rates of return.  

The previous investigation has been carried out assuming constant rates, both 
coupon rate and return rate. In this section we ought to complete this investigation in 
the term structure environment, supposing the structure to be assigned at an 
evaluation time put in 0, i.e. at bonds issue. For such structures, and assuming a 
coherent market, we shall use (7.25) and relations (7.26) to (7.39). As occurs for 
unshared loans amortization, when the change of rates can be performed over 
current time, the current uniperiods spot rates must be used by rules shown in 
section 6.9.4. 

The treatment of the previous topics can be restricted in few words if we observe 
that a lot of schemes regarding bond management, shown in sections 6.8 and 6.9, is 
still valid in the new context. Indeed it is enough to replace the constant coupon rate 
j with uniperiod forward coupon rates, varying over the time interval, the structure 
of which we will denote by jr 1,r . In addition, we will introduce, instead of only a 
valuation (or return) rate, an uniperiod forward return rate’s structure, that we apply 
to give the value in 0 by discounting the cash-inflow subsequent to 08, or otherwise 
the price in 0 that assures the yield given by the given structure, that we denote 

1,r ri . 

Unless stated otherwise the bonds have coupons, the period and payment times 
are annual and so are the rates. In case of semiannual coupons, it is sufficient to 
halve the coupon each year. 
                                                 
8  The inverse problem, of calculating a balanced return structure according to purchase price, 
gives infinite solutions. Then it has a theoretic importance, linkable with Generalized 
Discounted Cash Flow (GDCF) questions seen in section  4.4.2. 
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8.5.1. Financial flows by the issuer’s and investor’s point of view.  

Generalizing what was shown in section 6.8, we must distinguish the case of 
only one maturity for all bonds from that of different maturities with refunds 
according to a drawing plan: 

a)  Assumption of bonds with only one maturity 

Let us recall some symbols specified in section 6.8, using: 
 s  =  maturity (or life) of bonds, all issued in 0; 
 c =  redemption value of each bond (usually equal to par value); 
 N  =  number of issued bonds; 
 p0 =  purchase price of a bond at issue; 
 pr =  purchase price of a bond at time r>0. 

In addition, we use coupon jr 1,r  and yield ir 1,r  rate structure. 

On the basis of such assumptions the parties make the following operations: 

i) issuer:  (0,Np0) (1, Ncj0,1) ... (n 1, Ncjn 2,n 1) (n, Nc(1 jn 1,n )) 

ii) buyer in 0: (0, p0) (1,cj0,1) ... (n 1,cjn 2,n 1) (n,c(1 jn 1,n ))  

iii) buyer in r: (r, pr ) (r 1,cjr,r 1) ... (n 1,cjn 2,n 1) (n,c(1 jn 1,n ))  

Such results hold under annual coupons. In the case of semiannual coupons, at 
kth year for each bond we obtain two equal coupons whose amount is cjk-1,k /2; 

  b) Assumption of different bonds maturities with refunds according to draw 

Let n be the given loan time length with gradual refunds according to the 
following drawing plan 

 
s=1

,   sub 
n

s sN N N  (8.32) 

In such a assumption the issuer is the debtor on a gradual amortization whereas 
the investors  are creditors on an amortization with random time length and only one 
final refund after the payment of periodical interest. In detail, using (6.70) the 
operations are the following: 

i) issuer: 
0 1 1 1,(0, ) ( , )n

s s s s sNp s N c L cj  

ii) buyer in 0 with drawing and refund in s>0: 
 (0, p0) (1,cj0,1) ... (s 1,cjs 2,s 1) (s,c(1 js 1,s))  

iii) buyer in r with drawing and refund in s>r:  

 (r, pr ) (r 1,cjr,r 1) ... (s 1,cjs 2,s 1) (s,c(1 js 1,s))  
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8.5.2. Valuations of price and yield 

In section 6.9 valuations of bonds as a function of a given rate were performed; 
furthermore we have seen the correspondence between prices and discount rates 
that, given the prices, signify yield rates of the consequent investment operation.  

We have to recall that, in a constant rate context, the correspondence between 
present values (or initial prices) and rates is biunique. On the other hand, in a 
varying rate context according to term structures the correspondence is only 
univocal, in the way that “term structure price”, as soon as the bond loan 
parameters are assigned (see footnote 8). Then let us restrict ourselves, in this 
section devoted to valuations, to the calculation of the formula giving the balanced 
purchase price in the two schemes of  loan management.  

a) Assumption of bonds with only one maturity  

 Generalizing the results in section 6.9.2 and in (6.74) under coupon jk 1,k  
and return  ik 1,k  rates structures, with the symbols used in section 8.5.1 under a), 
the purchase price in 0 of bonds with life s is given by9  

 ( ) 1 1
0 1, 1, 1,1 11

  (1 ) (1 )
s h ss

h h k k k kk kh
z c j i i  (8.33) 

Furthermore, the bond purchase price in r (0<r<s), with unchanged term 
structures in (0,s) interval, is given by  

           ( ) 1 1
1, 1, 1,1 11

 (1 ) (1 )
s h ss

r h h k k k kk r k rh r
z c j i i  (8.33') 

b) Assumption of drawing bonds  

Generalizing the results of section 6.9.3 and (6.75') under coupon jk 1,k  and 

yield  ik 1,k  rates structures, with the  symbols used in section 8.5.1 under b) the 

bond purchase price in 0 is  now the arithmetic mean, weighed by Ns , of bonds’ 

prices having life s. Therefore it is worth  

( )
1 1

0 1, 1, 1,1 11 1 1

 
(1 ) (1 )

s
n n s h ss s

h h k k k kk ks s h

N z N c
z j i i

N N
 

(8.34) 

                                                 
9  Equation (8.33) shows that the inverse problem “price structure ik 1,k

” gives infinite 

solutions of a difficult calculation in the generalized IRR environment.  
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Furthermore, the bond purchase price in r (0<r<s), with unchanged term 
structures in (0,s) interval, is given by  

 1 1
1, 1, 1,1 11 1

 
 (1 ) (1 )

n s h ss
r h h k k k kk r k rs r h r

r

N c
z j i i

L
 (8.34') 


